芬兰Kibron专注表面张力仪测量技术,快速精准测量动静态表面张力

热线:021-66110810,56056830,66110819,66110690,13564362870 Email: info@vizai.cn

合作客户/

拜耳公司.jpg

拜耳公司

同济大学

同济大学

联合大学.jpg

联合大学

宝洁公司

美国保洁

强生=

美国强生

瑞士罗氏

瑞士罗氏

当前位置首页 > 新闻中心

石墨烯与磷脂之间的作用——结论、致谢!

来源:上海谓载 浏览 1390 次 发布时间:2021-11-11

结论


在本研究中,朗缪尔单层技术作为二维 方法适用于空气-水/水界面 了解彼此之间互动的性质和方向 GO 和脂质模型。 具有相同 18 碳烷基的五种脂质 链,但故意选择不同的头组电荷 使可能的相互作用合理化。 实验结果 表明这些脂质和 GO 之间的相互作用是明确的 受静电相互作用支配。 当这些脂质 散布在空气-GO 分散界面,GO 可以结合 或被吸附到单层带正电荷的脂质中 DODAB 和 DSEPC,增加平均分子面积。 然而,单层带中性电荷的头基 (磷酸胆碱)或带负电荷的头部基团(磷酸和羧基)不吸附 GO,因为没有偏爱 静电相互作用。 因为磷脂 在生物系统中带负电或中性电, GO 可能被细胞摄取到膜中 是由于 GO 和 磷脂,但通过膜的生物活性。


当 GO 被注入到 DODAB 和 DSEPC 带正电荷单层,不同 发现了表面压力的观察结果。 GO 可以插入 单层 DODAB 以 20 mN/m 增加表面 压力。 然而,GO 不能扩散到与 即使在低得多的表面压力下 DSEPC 单层 可能是由于屏蔽了乙基磷基团。 GO 绑定到 DODAB 时的定向模型和 提出 DSEPC 单层来解释不同的 GO在空气-水界面的吸附行为。 建议采用“边缘向内”而不是“面向内”的方向 描述 GO 纳米片插入时的方向 DODAB 的单层。


作者信息


通讯作者


*电子邮件:rml@miami.edu (RML)。


笔记


作者声明没有竞争性经济利益。


致谢


这项工作得到了 2012 年桥梁基金资助 迈阿密大学。


参考


(1) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228−240.


(2) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183−191.


(3) Morales-Narvaez, E.; Merkoc ́ i, A. Graphene Oxide as an Optical ̧ Biosensing Platform. Adv. Mater. 2012, 24, 3298−3308.


(4) Yang, X.; Wang, Y.; Huang, X.; Ma, Y.; Huang, Y.; Yang, R.; Duan, H.; Chen, Y. Multi-Functionalized Graphene Oxide Based Anticancer Drug-Carrier with Dual-Targeting Function and pHSensitivity. J. Mater. Chem. 2011, 21, 3448−3454.


(5) Nguyen, P.; Berry, V. Graphene Interfaced with Biological Cells: Opportunities and Challenges. J. Phys. Chem. Lett. 2012, 3, 1024− 1029.


(6) Li, S.; Aphale, A. N.; Macwan, I. G.; Patra, P. K.; Gonzalez, W. G.; Miksovska, J.; Leblanc, R. M. Graphene Oxide as a Quencher for Fluorescent Assay of Amino Acids, Peptides, and Proteins. ACS Appl. Mater. Interfaces 2012, 4, 7069−7075.


(7) Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008, 130, 10876−10877.


(8) Mu, Q.; Su, G.; Li, L.; Gilbertson, B. O.; Yu, L. H.; Zhang, Q.; Sun, Y. P.; Yan, B. Size-Dependent Cell Uptake of Protein-Coated Graphene Oxide Nanosheets. ACS Appl. Mater. Interfaces 2012, 4, 2259−2266.


(9) Sharma, P.; Tuteja, S. K.; Bhalla, V.; Shekhawat, G.; Dravid, V. P.; Suri, C. R. Bio-Functionalized Graphene−Graphene Oxide Nanocomposite Based Electrochemical Immunosensing. Biosens. Bioelectron. 2013, 39, 99−105.


(10) Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.; Goodwin, A.; Zaric, S.; Dai, H. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 2008, 1, 203−212.


(11) Peng, C.; Hu, W.; Zhou, Y.; Fan, C.; Huang, Q. Intracellular Imaging with a Graphene-Based Fluorescent Probe. Small 2010, 6, 1686−1692.


(12) Wang, Y.; Zhen, S. J.; Zhang, Y.; Li, Y. F.; Huang, C. Z. Facile Fabrication of Metal Nanoparticle/Graphene Oxide Hybrids: A New Strategy To Directly Illuminate Graphene for Optical Imaging. J. Phys. Chem. C 2011, 115, 12815−12821.


(13) Wang, Y.; Li, Z.; Hu, D.; Lin, C.; Li, J.; Lin, Y. Aptamer/ Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells. J. Am. Chem. Soc. 2010, 132, 9274−9276.


(14) Zhang, M.; Yin, B.-C.; Wang, X.-F.; Ye, B.-C. Interaction of Peptides with Graphene oxide and Its Application for Real-Time Monitoring of Protease Activity. Chem. Commun. 2011, 47, 2399− 2401.


(15) Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano 2011, 5, 7000−7009.


(16) Li, M.; Yang, X.; Ren, J.; Qu, K.; Qu, X. Using Graphene Oxide High Near-Infrared Absorbance for Photothermal Treatment of Alzheimer's Disease. Adv. Mater. 2012, 24, 1722−1728.


(17) Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Sanchez Casalongue, H.; Vinh, D.; Dai, H. Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy. J. Am. Chem. Soc. 2011, 133, 6825−6831.


(18) Spector, A. A.; Yorek, M. A. Membrane Lipid Composition and Cellular Function. J. Lipid Res. 1985, 26, 1015−35.


(19) Frost, R.; Jö nsson, G. E.; Chakarov, D.; Svedhem, S.; Kasemo, B. Graphene Oxide and Lipid Membranes: Interactions and Nanocomposite Structures. Nano Lett. 2012, 12, 3356−3362.


(20) Chang, Y.; Yang, S.-T.; Liu, J.-H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In Vitro Toxicity Evaluation of Graphene Oxide on A549 Cells. Toxicol. Lett. 2011, 200, 201−210.


(21) Liao, K.-H.; Lin, Y.-S.; Macosko, C. W.; Haynes, C. L. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Appl. Mater. Interfaces 2011, 3, 2607−2615.


(22) Zhang, L. L.; Zhao, S.; Tian, X. N.; Zhao, X. S. Layered Graphene Oxide Nanostructures with Sandwiched Conducting Polymers as Supercapacitor Electrodes. Langmuir 2010, 26, 17624− 17628.


(23) Wang, Z.-M.; Wang, W.; Coombs, N.; Soheilnia, N.; Ozin, G. A. Graphene Oxide−Periodic Mesoporous Silica Sandwich Nanocomposites with Vertically Oriented Channels. ACS Nano 2010, 4, 7437− 7450.


(24) Gao, Y.; Yip, H.-L.; Chen, K.-S.; O'Malley, K. M.; Acton, O.; Sun, Y.; Ting, G.; Chen, H.; Jen, A. K. Y. Surface Doping of Conjugated Polymers by Graphene Oxide and Its Application for Organic Electronic Devices. Adv. Mater. 2011, 23, 1903−1908.


(25) Engel, M. F. M.; Yigittop, H.; Elgersma, R. C.; Rijkers, D. T. S.; Liskamp, R. M. J.; de Kruijff, B.; Hö ppener, J. W. M.; Killian, J. A. Islet Amyloid Polypeptide Inserts into Phospholipid Monolayers as Monomer. J. Mol. Biol. 2006, 356, 783−789.


(26) Evers, F.; Jeworrek, C.; Tiemeyer, S.; Weise, K.; Sellin, D.; Paulus, M.; Struth, B.; Tolan, M.; Winter, R. Elucidating the Mechanism of Lipid Membrane-Induced IAPP Fibrillogenesis and Its Inhibition by the Red Wine Compound Resveratrol: A Synchrotron X-ray Reflectivity Study. J. Am. Chem. Soc. 2009, 131, 9516−9521.


(27) Theumer, M. G.; Clop, P. D.; Rubinstein, H. R.; Perillo, M. A. Effect of Surface Charge on the Interfacial Orientation and Conformation of FB1 in Model Membranes. J. Phys. Chem. B 2012, 116, 14216−14227.


(28) Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679−1682.


(29) Constantine, C.; Elkind, B. J.; Leblanc, R. M. Encyclopedia of Surface and Colloid Science; Taylor & Francis Group: New York, 2006.


(30) Engelking, J.; Menzel, H. Adsorption of Anionic Polyelectrolytes to Dioctadecyldimethylammonium Bromide Monolayers. Eur. Phys. J. E 2001, 5, 87−96.


(31) Bao, Y.-Y.; Bi, L.-H.; Wu, L.-X.; Mal, S. S.; Kortz, U. Preparation and Characterization of Langmuir−Blodgett Films of Wheel-Shaped Cu-20 Tungstophosphate and DODA by Two Different Strategies. Langmuir 2009, 25, 13000−13006.


(32) MacDonald, R. C.; Gorbonos, A.; Momsen, M. M.; Brockman, H. L. Surface Properties of Dioleoyl-sn-glycerol-3-ethylphosphocholine, a Cationic Phosphatidylcholine Transfection Agent, Alone and in Combination with Lipids or DNA. Langmuir 2006, 22, 2770−2779.


(33) Zhang, H.; Peng, C.; Yang, J.; Lv, M.; Liu, R.; He, D.; Fan, C.; Huang, Q. Uniform Ultrasmall Graphene Oxide Nanosheets with Low Cytotoxicity and High Cellular Uptake. ACS Appl. Mater. Interfaces 2013, 5, 1761−1767.


(34) Dong, H.; Gao, W.; Yan, F.; Ji, H.; Ju, H. Fluorescence Resonance Energy Transfer between Quantum Dots and Graphene Oxide for Sensing Biomolecules. Anal. Chem. 2010, 82, 5511−5517.


(35) Li, S.; Guo, J.; Patel, R. A.; Dadlani, A. L.; Leblanc, R. M. Interaction between Graphene Oxide and Pluronic F127 at the Air− Water Interface. Langmuir 2013, 29, 5742−5748.


(36) Gosvami, N. N.; Parsons, E.; Marcovich, C.; Berkowitz, M. L.; Hoogenboom, B. W.; Perkin, S. Resolving the Structure of a Model Hydrophobic Surface: DODAB Monolayers on Mica. RSC Adv. 2012, 2, 4181−4188.

石墨烯与磷脂之间的作用——摘要、介绍

石墨烯与磷脂之间的作用——实验部分

石墨烯与磷脂之间的作用——结果和讨论

石墨烯与磷脂之间的作用——结论、致谢!