芬兰Kibron专注表面张力仪测量技术,快速精准测量动静态表面张力

热线:021-66110810,56056830,66110819,66110690,13564362870 Email: info@vizai.cn

合作客户/

拜耳公司.jpg

拜耳公司

同济大学

同济大学

联合大学.jpg

联合大学

宝洁公司

美国保洁

强生=

美国强生

瑞士罗氏

瑞士罗氏

当前位置首页 > 新闻中心

表面张力对乙醇液滴冲击过冷水平壁面的铺展动力学行为的影响(二)

来源:西安交通大学学报 浏览 25 次 发布时间:2025-01-02

1.2数据处理

实验数据处理方法如图2所示。首先,使用圆形薄片进行标定,以确定高速摄像机镜头的放大比例,圆形薄片的水平直径和垂直直径分别为Lh和Lv,如图2(a)所示。其次,根据乙醇液滴即将接触过冷水平壁面的最后3帧计算冲击速度,如图2(b)所示,冲击速度的计算公式为

式中:X3f为乙醇液滴最后3帧移动的距离;t2f为移动时间。(a)圆形薄片两方向长度测量(b)液滴冲击速度测量(c)液滴初始直径测量(d)最大铺展因子测量图2实验数据处理方法


最后,使用PFV软件针对液滴的初始直径及铺展过程中的参数进行测量,如图2(c)、2(d)所示,分别从水平与垂直两个角度进行测量,并根据圆形薄片的水平和垂直角度放大比例,计算得到各物理量的真实值,计算公式为


式中:Xv为垂直测量值;Xh为水平测量值。


根据实验数据测量值,乙醇液滴冲击过冷水平壁面的雷诺数Re=ρU0D0/μ为2795,韦伯数We=ρU20D0/σ为354,奥内佐格数Oh=We/Re为0.0067。雷诺数代表惯性力与黏性力的比值,韦伯数代表惯性力和表面张力的比值,奥内佐格数代表黏性力与表面张力的比值。


2、结果讨论


2.1乙醇液滴冲击过冷水平壁面的现象

乙醇液滴冲击过冷水平壁面表现出两种不同模式。定义水平壁面过冷度为ΔT=273.15-Ts,其中Ts为水平壁面温度,实验涉及的过冷度有7个,分别为0、6、12、18、24、30和36K。如图3所示,乙醇液滴以2.43m/s的初速度冲击过冷度ΔT=6.0K的水平壁面时,在冲击后立即铺展,同时在液滴边缘发生飞溅。子液滴向周围各个方向散落,经历一段时间的铺展后逐渐趋于稳定,这一模式被称为模式Ⅰ飞溅-铺展。当水平壁面过冷度逐渐增大,如图4所示,ΔT=30.0K时,乙醇液滴冲击过冷水平壁面后同样发生铺展,同时子液滴飞溅,但随着铺展程度增大,液滴边缘在最大铺展时间时出现“手指状突起”,这一模式Ⅱ被称为飞溅-突起。

乙醇液滴冲击过冷水平壁面会在两个阶段出现飞溅或手指状突起,但两者形成的机理有所不同:前者是由于乙醇液滴的表面张力较小,液滴在冲击水平壁面的一瞬间,惯性力大于表面张力,液滴边缘无法保持原状,因而造成了飞溅;后者是由于液滴冲击过冷水平壁面,经过一段时间换热,液滴底部及边缘的温度降低,使得流体的密度增大,加剧了液滴与空气的密度差,在边缘前进速度的作用下,触发了液体-气体界面的瑞利-泰勒不稳定性,形成了手指状突起。总而言之,水平壁面过冷度较低时,乙醇液滴冲击形成模式Ⅰ飞溅-铺展;水平壁面过冷度较高时,冲击现象向模式Ⅱ飞溅-突起转变。


2.2水平壁面过冷度对铺展动力学行为的影响


为了探究水平壁面过冷度对液滴冲击的影响机制,定义无量纲铺展因子β=D(t)/D0,其中D(t)为液滴每一时刻的直径,Dmax为液滴能达到的最大铺展直径,对应的最大铺展因子为βmax=Dmax/D0。图5展示了不同水平壁面过冷度下,乙醇液滴冲击水平壁面的铺展因子β随时间的变化曲线。可以看出,乙醇液滴冲击不同过冷度水平壁面均在1.0ms内发生破碎-飞溅,在这段时间内,铺展速率近似为线性,在飞溅后,β突然减小,随后铺展因子继续增,铺展速率逐渐减小,最终趋于0,液滴形态不再发生变化。

根据液滴铺展随时间的变化,提取了不同过冷度下的βmax和tmax并绘制了图6。如图所示:随着水平壁面过冷度的增大,βmax呈现了先减小后增大的非单调变化趋势,并在水平壁面过冷度为18.0~30.0K时达到最小值;不同于βmax的变化趋势,tmax呈现逐渐减小的趋势,这是由于随着水平壁面过冷度的增加,换热加剧,液滴的温度降低,这使得密度、黏度、表面张力增加,抑制了最大铺展时间。根据Shang等提出的换热模型,将乙醇液滴看作一个整体,并将液滴冲击过冷水平壁面的过程看作圆柱形不断“变矮”和“变宽”的过程,可以得到乙醇液滴冲击过冷水平壁面的温度降低范围为1.8~3.7K。