合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 从高处往下倒水,为什么刚开始水是连成一条线,往下就成了散开的水珠?
> 疏水剂HFBⅡ和乳清蛋白组成的混合体系中的表面流变学与泡沫歧化稳定性的关系——结果和讨论、结论、致谢
> 表面张力与润湿作用
> 中国科学家合成新一代生物响应聚合物,可用于药物递送和生物传感
> 神经元钙传感蛋白(NCS1)的膜结合性能研究【上】
> 海洋细菌中生物表面活性物质——摘要、介绍
> Delta-8使用新方法测试CMC,而不是表面张力测试法——摘要
> 影响蒸发快慢的三个因素:液体的温度、液体的表面积、液体表面上方空气流动的速度
> 钠离子电池行业研究报告:蓄势待发,即将快速成长
> 表面张力仪分子所受到的各个方向的力是相同的
推荐新闻Info
-
> 氟硅表面活性剂(FSS)水溶液表面张力、发泡力、乳化力测定(三)
> 氟硅表面活性剂(FSS)水溶液表面张力、发泡力、乳化力测定(二)
> 氟硅表面活性剂(FSS)水溶液表面张力、发泡力、乳化力测定(一)
> 不同配方的水性氟丙树脂涂料涂膜合成、性能指标
> 芬兰Kibron表面张力测试仪跟踪氯乙烯悬浮聚合中的表面张力变化情况
> 泡泡消烟原理,不同质量分数碱剂发泡液表面张力的测试结果
> 什么是超微量天平,超微量天平使用方法、最小称量值
> 强子夸克相变的表面张力数值变化研究(二)
> 强子夸克相变的表面张力数值变化研究(一)
> 液滴中心液态区表面张力法研究PTFE胶粒与NaCl混合液滴图案形成原理
微凝胶颗粒在气液界面处吸附动力学及动态方程研究——结论、参考!
来源:上海谓载 浏览 1355 次 发布时间:2021-10-21
五、结论
PNIPAM 微凝胶很容易吸附到空气-水界面 由于它们的聚合性质。 我们通过实验 建立了这种微凝胶的二维状态方程 颗粒吸附在空气和水的界面上。 压力区 等温线即使在平均颗粒间距离远大于它们在本体中的流体动力学直径时也能提供可测量的压力。 这证实了粒子变形的事实 基本上在界面上。 使用简单的缩放参数 我们证明粒子的变形是同阶的 因为在非常低的负载下粒子间距离导致 非常小但可测量的压力。 这种低负荷下的压力间接探测颗粒的内部弹性, 这与内部交联密度有关。 实验性的 EOS 的观察结果与提出的标度关系相匹配 格鲁特和斯托亚诺夫。 出现的长度尺度 deff ¼ 1.25 nm 这种缩放关系可以看作是有效距离 交联之间。 与比例关系的偏差 在非常高的载荷下可能是由于屈曲 界面层或外围聚合物链段由于压缩而部分解吸。
使用实验 EOS,我们研究了吸附 这些微凝胶颗粒在空气-水界面上的动力学。 我们发现吸附过程可以清楚地分开 分为两种制度。 在短时间内,吸附过程是 由粒子从本体扩散到 界面。 很长一段时间,界面会充满粒子 从而为新颗粒吸附到 界面。 这导致 G 的指数松弛。
致谢 我们要感谢 Vinod Subramaniam 教授让我们 在他的帮助下使用 Kibron m-trough 和 Aditya Iyer 先生 Kibron m 槽上的实验。 我们也感谢阿伦博士 Banpurkar 的想法和讨论。 这项工作已 基础研究基金会的支持 Matter (FOM),由荷兰科学研究组织 (NWO) 提供资金支持。
参考
1 B. Brugger and W. Richtering, Langmuir, 2008, 24, 7769– 7777.
2 B. Brugger, B. A. Rosen and W. Richtering, Langmuir, 2008, 24, 12202–12208.
3 M. Destribats, V. Lapeyre, M. Wolfs, E. Sellier, F. LealCalderon, V. Ravaine and V. Schmitt, So Matter, 2011, 7, 7689–7698.
4 B. P. Binks, Curr. Opin. Colloid Interface Sci., 2002, 7, 21–41.
5 L. A. Lyon and A. Fernandez-Nieves, Annu. Rev. Phys. Chem., 2012, 63, 25–43.
6 B. Brugger, J. Vermant and W. Richtering, Phys. Chem. Chem. Phys., 2010, 12, 14573–14578.
7 M. Destribats, V. Lapeyre, E. Sellier, F. Leal-Calderon, V. Ravaine and V. Schmitt, Langmuir, 2012, 28, 3744–3755.
8 K. Geisel, L. Isa and W. Richtering, Langmuir, 2012, 28, 15770–15776.
9 Z. Li, K. Geisel, W. Richtering and T. Ngai, So Matter, 2013, 9, 9939–9946.
10 T. Ngai, S. H. Behrens and H. Auweter, Chem. Commun., 2005, 331–333.
11 Y. Cohin, M. Fisson, K. Jourde, G. Fuller, N. Sanson, L. Talini and C. Monteux, Rheol. Acta, 2013, 52, 445–454.
12 S. L. Kettlewell, A. Schmid, S. Fujii, D. Dupin and S. P. Armes, Langmuir, 2007, 23, 11381–11386.
13 R. D. Groot and S. D. Stoyanov, So Matter, 2010, 6, 1682–1692.
14 S. H¨o, L. Zitzler, T. Hellweg, S. Herminghaus and F. Mugele, Polymer, 2007, 48, 245–254.
15 M. Destribats, M. Eyharts, V. Lapeyre, E. Sellier, I. Varga, V. Ravaine and V. Schmitt, Langmuir, 2014, 30, 1768–1777.
16 M. Horecha, V. Senkovskyy, A. Synytska, M. Stamm, A. I. Chervanyov and A. Kiriy, So Matter, 2010, 6, 5980–5992.
17 R. Acciaro, T. Gilanyi and I. Varga, Langmuir, 2011, 27, 7917– 7925.
18 X. Wu, R. H. Pelton, A. E. Hamielec, D. R. Woods and W. McPhee, Colloid Polym. Sci., 1994, 272, 467–477.
19 S. Zhou, S. Fan, S. C. F. Au-yeung and C. Wu, Polymer, 1995, 36, 1341–1346.
20 I. Varga, T. Gilnyi, R. Mszros, G. Filipcsei and M. Zrnyi, J. Phys. Chem. B, 2001, 105, 9071–9076.
21 R. de Ruiter, R. W. Tjerkstra, M. H. G. Duits and F. Mugele, Langmuir, 2011, 27, 8738–8747.
22 M. Garcia-Salinas, M. Romero-Cano and F. de las Nieves, J. Colloid Interface Sci., 2001, 241, 280–285.
23 O. S. Deshmukh, A. Maestro, M. H. G. Duits, D. van den Ende, M. Cohen Stuart and F. Mugele, manuscriptin preparation.
24 W. Richtering, Langmuir, 2012, 28, 17218–17229.
25 A. Burmistrova, M. Richter, M. Eisele, C. zm and R. von Klitzing, Polymers, 2011, 3, 1575–1590.
26 E. H. Purnomo, D. van den Ende, S. A. Vanapalli and F. Mugele, Phys. Rev. Lett., 2008, 101, 238301.
27 Theory and Simulation of Hard-Sphere Fluids and Related Systems, ed. A. Mulero, Springer, Berlin, 2008.
28 A. Mulero, I. Cachadia and J. R. Solana, Mol. Phys., 2009, 107, 1457–1465.
29 D. Henderson, Mol. Phys., 1977, 34, 301–315.
30 C. F¨anger, H. Wack and M. Ulbricht, Macromol. Biosci., 2006, 6, 393–402.
31 S. Sun and P. Wu, J. Mater. Chem., 2011, 21, 4095–4097.
32 C. H. Chang and E. I. Franses, Colloids Surf., A, 1995, 100, 1–45.
33 H. Ritacco, D. Langevin, H. Diamant and D. Andelman, Langmuir, 2011, 27, 1009–1014.
34 A. F. H. Ward and L. Tordai, J. Chem. Phys., 1946, 14, 453– 461.
微凝胶颗粒在气液界面处吸附动力学及动态方程研究——摘要、简介
微凝胶颗粒在气液界面处吸附动力学及动态方程研究——材料与方法