合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
推荐新闻Info
-
> 强紫外线辐射对减缩剂抑制水泥石干缩变形效果研究(四)
> 强紫外线辐射对减缩剂抑制水泥石干缩变形效果研究(三)
> 强紫外线辐射对减缩剂抑制水泥石干缩变形效果研究(二)
> 强紫外线辐射对减缩剂抑制水泥石干缩变形效果研究(一)
> 无机粒子对TPAE界面张力、发泡、抗收缩行为的影响(四)
> 无机粒子对TPAE界面张力、发泡、抗收缩行为的影响(三)
> 无机粒子对TPAE界面张力、发泡、抗收缩行为的影响(二)
> 无机粒子对TPAE界面张力、发泡、抗收缩行为的影响(一)
> 弱碱三元采出液油水界面动态界面张力、强度、等特性研究
> 植保无人机喷头和喷雾助剂对药液表面张力、雾滴密度、覆盖率的影响(二)
牛血清白蛋白对表面的影响离子液体型双子表面活性剂的性质——结论、致谢!
来源:上海谓载 浏览 1001 次 发布时间:2021-11-24
4. 结论
基于上述讨论,我们得出结论:
1. [C10-4-C10im]Br2通过静电和疏水作用与BSA结合。
2. BSA-[C10-4-C10im]Br2的配合物比[C10-4-C10im]Br2具有更高的表面活性。
3. 随着温度的升高,BSA的存在有利于吸附而不是胶束化。
4. 上述所有体系的胶束化过程都是放热和熵驱动的。
5. [C10-4-C10im]Br2系统的吸附过程是吸热和熵驱动的,而BSA-[C10-4-C10im]Br2系统的吸附过程是放热和焓驱动的。
Rajan Patel博士非常感谢印度新德里科学和工程研究委员会(EEQ/2016/000339、SB/EMEQ-097/2013和SR/S1/PC-19/2011)提供的财政支持。 Abbul Bashar Khan还感谢印度新德里科学和工程研究委员会提供的研究资助(SB/FT/CS-031/2013)。 感谢新德里CSIR向Meena Kumari提供的奖学金(JRF/SRF)。 Upendra Kumar Singh感谢新德里教资会提供SRF奖学金。
工具书类
[1] Mall, S.; Buckton, G.; Rawlins, D. J. Pharm. Sci. 1996, 85, 75–78.
[2] Gull, N.; Chodankar, S.; Aswal, V.; Sen, P.; Khan, R. H. Colloids Surf. B Biointerfaces 2009, 69, 122–128.
[3] Madaeni, S. S.; Rostami, E. Chem. Eng. Technol. 2008, 31, 1265–1271.
[4] Vlasova, I. M.; Saletsky, A. M. Russ. J. Phys. Chem. B 2011, 5, 320–325.
[5] Vlasova, I.; Saletsky, A. Laser Phys. 2011, 21, 239–244.
[6] Vlasova, I. M.; Vlasov, A. A.; Saletsky, A. M. J. Mol. Struct. 2010, 984, 332–338.
[7] Vlasova, I. M.; Zhuravleva, V. V.; Saletskii, A. M. Russ. J. Phys. Chem. 2012, 86, 509–515.
[8] Vlasova, I. M.; Zemlyanskii, A. Y.; Saletskii, A. M. J. Appl. Spectrosc. 2006, 73, 743–747.
[9] Vlasova, I.; Polyansky, D.; Saletsky, A. Laser Phys. Lett. 2007, 4, 890.
[10] Vlasova, I. M.; Saletsky, A. M. J. Appl. Spectrosc. 2009, 76, 536–541.
[11] Menger, F.; Littau, C. J. Am. Chem. Soc. 1993, 115, 10083–10090.
[12] Rosen, M. J.; Tracy, D. J. J. Surfactants Deterg. 1998, 1, 547–554.
[13] Zana, R.; Xia, J. Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications; Boca Raton, Florida, United States: CRC Press, 2003; Vol. 117.
[14] Ao, M.; Xu, G.; Pang, J.; Zhao, T. Langmuir 2009, 25, 9721–9727.
[15] Sharma, R.; Kamal, A.; Abdinejad, M.; Mahajan, R. K.; Kraatz, H. B. Adv. Colloid Interface Sci. 2017, 248, 35–68.
[16] Bhadani, A.; Singh, S. Langmuir 2011, 27, 14033–14044.
[17] Kamboj, R.; Singh, S.; Bhadani, A.; Kataria, H.; Kaur, G. Langmuir 2012, 28, 11969–11978.
[18] Bhadani, A.; Kataria, H.; Singh, S. J. Colloid. Interface Sci. 2011, 361, 33–41.
[19] Negm, N. A.; Abd-Elaal, A. A.; Mohamed, D. E.; El-Farargy, A. F.; Mohamed, S. J. Ind. Eng. Chem. 2015, 24, 34–41.
[20] Casal-Dujat, L.; Rodrigues, M.; Yagüe, A.; Calpena, A. C., Amabilino, D. B., González-Linares, J.; Borràs, M.; Pérez-García, L. Langmuir 2012, 28, 2368–2381.
[21] Kim, H. C.; Kim, E.; Ha, T. L.; Jeong, S. W.; Lee, S. G.; Lee, S. J.; Lee, B. Colloids Surf. B Biointerfaces. 2015, 127, 206–212.
[22] Cardoso, A. M.; Morais, C. M.; Cruz, A. R.; Cardoso, A. L.; Silva, S. G.; Do Vale, M. L.; Marques, E. F.; Pedroso de Lima, M. C.; Jurado, A.l. S. Mol. Pharm. 2015, 12, 716–730.
[23] Fisicaro, E.; Compari, C.; Bacciottini, F.; Contardi, L.; Barbero, N.; Viscardi, G.; Quagliotto, P.; Donofrio, G.; Różycka-Roszak, B. E., and Misiak, P. J. Phys. Chem. B. 2014, 118, 13183–13191.
[24] Earle, M. J.; Seddon, K. R. Pure Appl. Chem. 2000, 72, 1391–1398.
[25] Gordon, C. M. Appl. Catal., A. General. 2001, 222, 101–117.
[26] Baker, S. N.; McCleskey, T. M.; Pandey, S.; Baker, G. A. Chem. Commun. 2004, 940–941.
[27] Li, Y.; Wang, X.; Wang, Y. J. Phys. Chem. B. 2006, 110, 8499–8505.
[28] Gull, N.; Sen, P.; Khan, R. H. Langmuir 2009, 25, 11686–11691.
[29] Chen, L.; Shang, Y.; Liu, H.; Hu, Y. J. Colloid. Interface Sci. 2006, 301, 644–650.
[30] Mir, M. A.; Khan, J. M.; Khan, R. H.; Rather, G. M.; Dar, A. A. Colloids Surf. B Biointerfaces. 2010, 77, 54–59.
[31] Tu, S.; Jiang, X.; Zhou, L.; Yin, W.; Wang, H.; Duan, M.; Liu, P.; Jiang, X. J. Lumin. 2012, 132, 381–385.
[32] Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou, Y. Angew. Chem. Int. Ed. 2004, 43, 4988–4992.
[33] Kuang, D.; Brezesinski, T.; Smarsly, B. J. Am. Chem. Soc. 2004, 126, 10534–10535.
[34] Moulik, S.; Paul, B. Adv. Colloid Interface Sci. 1998, 78, 99–195.
[35] Paul, B. K.; Mitra, R. K. J. Colloid. Interface Sci. 2005, 288, 261–279.
[36] Leodidis, E. B.; Hatton, T. A. J. Phys. Chem. 1990, 94, 6400–6411.
[37] Fry, A. J. J. Electroanal. Chem. 2003, 546, 35–39.
[38] Xia, H.; Yu, J.; Jiang, Y.; Mahmood, I.; Liu, H. Ind. Eng. Chem. Res. 2007, 46, 2112–2116.
[39] Khan, A. B.; Wani, F. A.; Dohare, N.; Parray, M. U.; Singh, P.; Patel, R. J. Chem. Eng. Data. 2017, 62, 3064–3070.
[40] Zhou, T.; Ao, M.; Xu, G.; Liu, T.; Zhang, J. J. Colloid. Interface Sci. 2013, 389, 175–181.
[41] Sharma, T.; Dohare, N.; Kumari, M.; Singh, U. K.; Khan, A. B., Borse, M. S.; Patel, R. RSC Adv. 2017, 7, 16763–16776.
[42] Mir, M. U. H.; Maurya, J. K.; Ali, S.; Ubaid-Ullah, S.; Khan, A. B.; Patel, R. Process Biochem. 2014, 49, 623–630.
[43] Kumari, M.; Maurya, J. K., Tasleem, M.; Singh, P.; Patel, R. J. Photochem. Photobiol. B: Biology. 2014, 138, 27–35.
[44] Kumari, M.; Maurya, J. K.; Singh, U. K.; Khan, A. B.; Ali, M.; Singh, P.; Patel, R. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 124, 349–356.
[45] Kumari, M.; Dohare, N.; Maurya, N.; Dohare, R.; Patel, R. J. Biomol. Struct. Dyn. 2016, 35, 2016–2030.
[46] Kumari, M.; Singh, U. K.; Singh, P.; Patel, R. Chemistry Select. 2017, 2, 1241–1249.
[47] Patel, R.; Parray, M. U.; Singh, U. K.; Islam, A.; Venkatesu, P.; Singh, S.; Bohidar, H. B. Colloids Surf. A Physicochem. Eng. Asp. 2016, 508, 150–158.
[48] Singh, U. K.; Dohare, N.; Mishra, P.; Singh, P.; Bohidar, H. B.; Patel, R. J. Photochem. Photobiol. B: Biology. 2015, 149, 1–8.
[49] Zhang, S.; Chen, X.; Ding, S.; Lei, Q.; Fang, W. Colloids Surf. A Physicochem. Eng. Asp. 2016, 495, 30–38.
[50] Amiri, R.; Bordbar, A. K.; Laurents, D. V. J. Phys. Chem. B. 2014, 118, 10633–10642.
[51] Amiri, R.; Bordbar, A.-K.; García-Mayoral, M.; Khosropour, A. R.; Mohammadpoor-Baltork, I.; Menéndez, M.; Laurents, D. V. J. Colloid. Interface Sci. 2012, 369, 245–255.
[52] Wu, D.; Xu, G.; Sun, Y.; Zhang, H.; Mao, H.; Feng, Y. Biomacromolecules 2007, 8, 708–712.
[53] Friberg, S. E. J. Dispers Sci. Technol. 1994, 15, 399–399.
[54] Geng, X.; Wu, Y.; Song, J.; Geng, X.; Xing, J.; Lei, Z. J. Therm. Anal. Calorim. 2006, 85, 593–600.
[55] Maurya, J. K., Mir, M. U. H.; Singh, U. K.; Maurya, N.; Dohare, N.; Patel, S.; Ali, A.; Patel, R. Biopolymers 2015, 103, 406–415.
[56] Valstar, A.; Vasilescu, M.; Vigouroux, C.; Stilbs, P.; Almgren, M. Langmuir. 2001, 17, 3208–3215.
[57] Karush, F. J. Am. Chem. Soc. 1950, 72, 2705–2713.
[58] Vasilescu, M.; Angelescu, D.; Almgren, M.; Valstar, A. Langmuir. 1999, 15, 2635–2643.
[59] Carter, D. C.; Chang, B.; Ho, J. X.; Keeling, K.; Krishnasami, Z. Eur. J. Biochem. 1994, 226, 1049–1052.
[60] Carter, D. C.; Ho, J. X. Adv. Protein Chem. 1994, 45, 153–203.
[61] He, X. M.; Carter, D. C. Nature. 1992, 358, 209–215.
[62] Petitpas, I.; Bhattacharya, A. A.; Twine, S.; East, M.; Curry, S. J. Biol. Chem. 2001, 276, 22804–22809.
[63] Ao, M.; Xu, G.; Zhu, Y.; Bai, Y. J. Colloid. Interf. Sci. 2008, 326, 490–495.
[64] Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. Protein Sci. 1995, 4, 2411–2423.
[65] Geng, F.; Zheng, L.; Yu, L.; Li, G.; Tung, C. Process Biochem. 2010, 45, 306–311.
[66] Kresheck, G. Water. A comprehensive treatise. Plenum, NY istry, studies of amphiphilic systems, and so on, USA: Springer, 1975; pp 300.
[67] Meguro, K.; Takasawa, Y.; Kawahashi, N.; Tabata, Y.; Ueno, M. J. Colloid. Interf. Sci. 1981, 83, 50–56.
[68] Ruiz, C. C.; Diaz-Lopez, L.; Aguiar, J. J. Colloid. Interf. Sci. 2007, 305, 293–300.
[69] Das, C.; Das, B. J. Chem. Eng. Data. 2008, 54, 559–565.
[70] Negm, N. A. Egypt J. Chem. 2002, 45, 483–499.
[71] Kolay, S.; Ghosh, K. K.; MacDonald, A.; Moulins, J.; Palepu, R. M. J. Solution. Chem. 2008, 37, 59–72.
[72] Wang, X.; Liu, J.; Sun, L.; Yu, L.; Jiao, J.; Wang, R. J. Phys. Chem. B. 2012, 116, 12479–12488.
[73] Rosen, M. J.; Cohen, A. W.; Dahanayake, M.; Hua, X. Y. J. Phys. Chem. B. 1982, 86, 541–545.
[74] Zana, R. Adv. Colloid Interface Sci. 2002, 97, 205–253.
[75] Pradines, V.; Krägel, J. R.; Fainerman, V. B.; Miller, R. J. Phys. Chem. B. 2008, 113, 745–751.
[76] Chattoraj, D. Adsorption and the Gibbs surface excess; Springer Science & Business Media, US, 2012.
[77] Ko, J. S.; Oh, S. W.; Kim, Y. S.; Nakashima, N.; Nagadome, S.; Sugihara, G. J. Oleo Sci. 2004, 53, 109–126.
[78] Mahajan, S.; Sharma, R.; Mahajan, R. K. Langmuir. 2012, 28, 17238–17246.
[79] Negm, N. A.; Kandile, N. G.; Mohamad, M. A. J. Surfactants. Deterg. 2011, 14, 325–331.
[80] Sayed, G. H., Ghuiba, F. M.; Abdou, M. I.; Badr, E.A. A.; Tawfik, S. M.; Negm, N.A. M. Colloids Surf. A Physicochem. Eng. Asp. 2012, 393, 96–104.
牛血清白蛋白对表面的影响离子液体型双子表面活性剂的性质——摘要、介绍
牛血清白蛋白对表面的影响离子液体型双子表面活性剂的性质——材料和方法
牛血清白蛋白对表面的影响离子液体型双子表面活性剂的性质——结果和讨论
牛血清白蛋白对表面的影响离子液体型双子表面活性剂的性质——结论、致谢!